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Problem 1.

(a) What are the operators corresponding to the momentum and energy of
a particle?

(b) Write down the time-dependent Schrédinger Equation. How and under
what circumstances can one derive the time-independent Schrodinger
Equation from it?

(c) What is meant by a Hermitian operator? What properties do its eigen-
values and eigenfunctions have?

(d) Which of the following pairs of operators can have simultaneous eigen-
functions? Explain your answer (no more than 10 words needed).

(i) pand T = p?/2m
(ii) p and V(z)



Problem 2.

A particle of mass m moving in one dimension is subject to an attractive
delta-function potential V(z) = V; §(z) centered at the origin (V5 < 0). It
will turn out that there is only one bound state.

(a) Determine energy and wave function of the bound state.

(b) What is the probability for locating the particle at a distance = from
the origin?

Problem 3.

(a) The operator A does not depend explicitly on time. Show that for any
solution ¥(z,t) of the time-dependent Schrodinger equation

z‘h%<\1/]Al\I/> = < U|[4,H]|V > .

(b) Apply the result of part (a) to the momentum operator, and evaluate

d
- = 2
dt<p>

(c) The result of part (b) is known as Ehrenfest’s theorem. State in words
the relation this gives between quantum and classical mechanics.



Problem 4.

A particle moving in the one-dimensional square-well potential

V(m):{O T<a

© |z]>a
is in the state

w(z) = \%[@(az) + ¢a(z)]

at time t = 0, where the ¢,(z) are the normalized wave functions

1 7

Onlz) = %cos(%), n=13,
1

on(z) = %sm(%;ﬁ), n =24,

(a) Determine E,.
(b) What is its wave function ©(z,t) at time ¢7

(¢) Calculate the probabilities P, (t) and P_(t) that at time ¢ the particle
is in the intervals 0 < £ < a and —a < z < 0 respectively.

2sinasin 8 = cos(a — 8) — cos(a + )
2 cosa cos 3 = cos(a — 3) + cos(a + 53)
2sina cos 8 = sin(a — 8) + sin(a + 5)

(d) Interpret the time-dependence of these probabilities.

Problem 5.

The initial state |¢); > of a quantum system is given in an orthonormal basis
of three states |a >, | >, and |y > that form a complete set:

<aly; >=1i/V3, < Bl >=1/2/3, <Ali>=0

Calculate the probability of finding the system in a state [1); > given in the
same basis as

<alyr>=(1+1)/V3, < Blvy >=/1/6, <Ay >=4/1/6.



